34 research outputs found

    On Maximum Contention-Free Interleavers and Permutation Polynomials over Integer Rings

    Full text link
    An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are of particular interest because they admit analytical designs and simple, practical hardware implementation. Contention-free interleavers have been recently shown to be suitable for parallel decoding of turbo codes. In this correspondence, it is shown that permutation polynomials generate maximum contention-free interleavers, i.e., every factor of the interleaver length becomes a possible degree of parallel processing of the decoder. Further, it is shown by computer simulations that turbo codes using these interleavers perform very well for the 3rd Generation Partnership Project (3GPP) standard.Comment: 13 pages, 2 figures, submitted as a correspondence to the IEEE Transactions on Information Theory, revised versio

    On Quadratic Inverses for Quadratic Permutation Polynomials over Integer Rings

    Full text link
    An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are of particular interest because they admit analytical designs and simple, practical hardware implementation. Sun and Takeshita have recently shown that the class of quadratic permutation polynomials over integer rings provides excellent performance for turbo codes. In this correspondence, a necessary and sufficient condition is proven for the existence of a quadratic inverse polynomial for a quadratic permutation polynomial over an integer ring. Further, a simple construction is given for the quadratic inverse. All but one of the quadratic interleavers proposed earlier by Sun and Takeshita are found to admit a quadratic inverse, although none were explicitly designed to do so. An explanation is argued for the observation that restriction to a quadratic inverse polynomial does not narrow the pool of good quadratic interleavers for turbo codes.Comment: Submitted as a Correspondence to the IEEE Transactions on Information Theory Submitted : April 1, 2005 Revised : Nov. 15, 200

    Coded Modulation for Satellite Broadcasting

    Get PDF
    In this paper, three-level block coded 8-PSK modulations, suitable for satellite broadcasting of digital TV signals, are presented. A design principle to achieve unequal error protection is introduced. The coding scheme is designed in such a way that the information bits carrying the basic definition TV signal have a lower error rate than the high definition information bits. The large error coefficients, formally associated with standard mapping by set partitioning, are reduced by considering a nonstandard partition of an 8-PSK signal set. The bits-to-signal mapping induced by this partition allows the use of suboptimal low-complexity soft-decision decoding of binary block codes. Parallel operation of the first and second stage decoders is possible, for high data rate transmission. Furthermore, there is no error propagation from the first-stage decoder to the second-stage decoder

    Error Control Coding Techniques for Space and Satellite Communications

    Get PDF
    Turbo coding using iterative SOVA decoding and M-ary differentially coherent or non-coherent modulation can provide an effective coding modulation solution: (1) Energy efficient with relatively simple SOVA decoding and small packet lengths, depending on BEP required; (2) Low number of decoding iterations required; and (3) Robustness in fading with channel interleaving

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore